Closed-Loop Product Life Cycle Management — Using Smart Embedded Systems

Edited by Markus Frey
PROMISE Interregional Coordinating Partner
Bombardier Transportation

Closed-Loop Product Life Cycle Management— Using Smart Embedded Systems

Copyright © 2011 by ISA—International Society of Automation

67 Alexander Drive P.O. Box 12277 Research Triangle Park, NC 27709

All rights reserved. Printed in the United States of America. 10 9 8 7 6 5 4 3 2

ISBN: 978-1-936007-61-5

No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior written permission of the publisher.

Notice

The information presented in this publication is for the general education of the reader. Because neither the author nor the publisher has any control over the use of the information by the reader, both the author and the publisher disclaim any and all liability of any kind arising out of such use. The reader is expected to exercise sound professional judgment in using any of the information presented in a particular application. Additionally, neither the author nor the publisher have investigated or considered the effect of any patents on the ability of the reader to use any of the information in a particular application. The reader is responsible for reviewing any possible patents that may affect any particular use of the information presented.

Any references to commercial products in the work are cited as examples only. Neither the author nor the publisher endorses any referenced commercial product. Any trademarks or tradenames referenced belong to the respective owner of the mark or name. Neither the author nor the publisher makes any representation regarding the availability of any referenced commercial product at any time. The manufacturer's instructions on use of any commercial product must be followed at all times, even if in conflict with the information in this publication.

Library of Congress Cataloging-in-Publication Data in Process

Preface

Developing a "Closed-Loop Product Life Cycle Management (PLM) using Smart Embedded Systems" was the challenging mission for the IMS Project PROMISE (Product Life Cycle Management and Information Tracking using Smart Embedded Systems), which successfully concluded in 2008.

PROMISE developed a new type of closed-loop PLM based on product embedded Information Devices (PEID), which allows product information to be tracked at all times and in any location around the world. This new PLM system enables product users, maintainers, and manufacturers to manage the life cycle information of their products seamlessly over all life cycle phases: beginning of life (BOL), middle of life (MOL), and end of life (EOL).

Over the next five chapters, this book will provide industrial users as well as the broad R&D community with an understanding of the principles behind the PROMISE technologies, their successful implementation in the PROMISE demonstrators, and their enormous potential across the industrial spectrum:

- Chapter 1. Introduction with overview on the IMS PROMISE project
- Chapter 2. Description of the PROMISE 'Closed-Loop PLM' approach
- Chapter 3. Explanation of principles and achievements for the main PROMISE technologies
- Chapter 4. Presentation of approach and results for various successfully developed demonstrators in different industrial areas
- Chapter 5. Highlights on benefits using PROMISE technologies and its applicability for broad industrial fields

The material for this book is taken from the PROMISE work and deliverables with contribution from all project partners.

Acknowledgments

On behalf of the IMS PROMISE project consortium, I gratefully acknowledge the IMS organization and all regional funding organizations for their great support in carrying out the PROMISE project so successfully.

I extend our gratitude and appreciation to O³neida and especially to Allan

Martel and Susan Colwell for their invaluable support and efforts in making this book possible.

I would like to send special thanks to the various authors of the chapters in this book for their great efforts, as well as to the Regional Coordinating Partners for always keeping this large interregional project team on a successful track, and last—but not least—to all project partners for their collaboration and their contributions to this project.

Markus Frey PROMISE Interregional Coordinating Partner Bombardier Transportation

Table of Contents

	of Tables	
1	Introduction	1
	The main objectives 1	
	The PROMISE deliveries in brief 4	
	Managing the PROMISE project 7	
2	Objectives, Principles, and Cornerstones	11
	The PROMISE Challenge11	
	Addressing the Challenge: the PROMISE proposition 15	
	PROMISE PLM system architecture	
	Who can benefit from PROMISE?24	
	Highlights of achievements24	
	The PROMISE demonstrators	
	Conclusions29	
	References	
3	PROMISE Technologies	31
3.1	PROMISE System Architecture	
	PROMISE architecture concepts	
	Hardware layer41	
	Product embedded information device (PEID) 42	
	PROMISE Data Services	
	PROMISE PDKM/DSS 67	
3.2	Product Embedded Information Device (PEID)	69
	Concept of PEID69	
	Definition of Core PAC	
	Semantics of Core PAC interface	
	Core PEID Prototype Implementation 83	
	Summary	

3.3	Middleware	91
	Locating information sources94	
	PROMISE messaging interface	
	PMI implementation in Dialog 102	
	Conclusions	
	References	
3.4	Product Data and Knowledge Management (PDKM)	111
	Introduction112	
	Users and user roles	
	Functional requirements114	
	Design criteria 115	
	The PROMISE PDKM system 120	
	The PROMISE PDKM SOM 128	
	PDKM system prototypical implementation 133	
	Concluding remarks	
	Acknowledgment	
	References	
2.5	Decision Support System (DSS)	120
3.5	Decision Support System (DSS)	139
	Abstract	
	Previous work	
	A short history of DSS	
	Main components of a DSS	
	The DSS platform PARASUITE	
	Architecture overview	
	Data Exchange Interface	
	Flow-based computation engine	
	Benefits	
	Summary	
	References	
3.6	Integrated Design Support	157
	Outline 157	
	Requirements analysis and real data evaluation 158	
	Modelling and system framework for evaluation	
	of quality degradation	
	Reliability design method based on evaluation	

	of quality degradation159	
	Maintenance planning for life cycle management 159	
	Product life cycle management using feedback	
	of operational information	
	Prototyping and evaluation 159	
	Application examples 160	
	Maintenance planning for life cycle management 164	
	Product life cycle management using feedback	
	of operational information171	
	User preference	
	Supporting consumers in use and maintenance	
	of HDD of their PCs	
	Summary 178	
	References	
3.7	Standardization	181
	Introduction182	
	Scope of standardization for the PROMISE	
	EU project	
	Hardware layer and Core PEID 184	
	Core PAC interface	
	PROMISE Data Services (middleware) 186	
	PMI (PROMISE Middleware Interface)	
	PDKM 188	
	Conclusions and next steps 192	
	References	
3.8	Identifying and Evaluating the PROMISE	
	Demonstrators' Business Effects	195
	Why focus on the Demonstrators' business effects? 195	
	Methodologies for assessment of business	
	potential, targets, and effects	
	Methodology 1: Business Effect Evaluation	
	Methodology (BEEM)	
	Methodology 2: Cost-benefit and sensitivity analyses 202	
	Work sessions/meetings at demonstrator	
	owners' sites	
	General comments on the analyses of demonstrators	
	business potential	
	Conclusion	
	Bibliography208	

4	PROMISE Demonstrators	209
4.1	Demonstrators Covering Multiple Life Cycle Phases	213
4.1.1	Product Quality Evaluation Based on Product Life Cycle Modelling with Disturbances	215
	Product life cycle modelling with disturbances 215	
	Product reliability design	
	Product reliability based on product life cycle modelling	
	Product life cycle modelling under disturbances 222	
	Product functional modelling	
	Summary	
4.1.2		
	to Storage and Shipping, Including Customer	
	Claim Tracking	233
	Beginning Of Life (BOL)234	
	Middle of Life (MOL)	
	End of Life (EOL)	
	PLM for BOL management	
	Conclusion	
4.2	Beginning of Life Demonstrators	243
4.2.1	Transformation of Field Data into DfX Knowledge	245
	Introduction	
	'Design for X' application scenario246	
	Characteristics of the BT DfX demonstrator 248	
	Implementation of DfX demonstrator	
	Analysis of obtained results	
	Conclusions	
	References	
4.2.2	Adaptive Production	263
	Introduction	
	Adaptive Production scenario	
	Requirements for Adaptive Production	

	Modification of the cylinder head and block 268	
	Modification of the car body	
	Adaptive Production in PROMISE	
	Algorithms275	
	Physical Performance Evaluator	
	Economic Performance Evaluator	
	Optimal Buffer Space Allocation Algorithm 280	
	Conclusions284	
	References	
4.3	Middle of Life Demonstrators	287
4.3.1	Predictive Maintenance for Trucks	289
	Overview of the application	20>
	Overview of maintenance strategies	
	Architecture and results	
	Innovation	
4.3.2	Predictive Maintenance for Machine Tools	297
1.5.2	Introduction	············
	State of the art in maintenance management	
	The proposed integrated approach to maintenance	
	management	
	Description of the testing module	
	Description of the aging module	
	Cost maintenance management module	
	Conclusion 305	
	References	
4.3.3	Smart Bridge Health Monitoring and Diagnostics	309
	General methodology	
	Case study	
	Conclusion	
	Acknowledgment	
	References	
4 4	End of Life Demonstrators	325

4.4.1	Tracking and Tracing of Products for Recycling	327
	Introduction	
	Specifics of the recycling sector	
	Application scenario	
	Implementation of the demonstrator	
	Analysis of results	
	Conclusions	
	References	
4.4.2	De coeline e de Dientie Commune Douglain Brooks de	2.41
4.4.2	Recycling of Plastic Consumer Durable Products	341
	Making decisions in plastic recycling 341	
	Prediction of plastics volumes available for	
	recycling in automotive industry 345	
	The effect of contamination on the properties of	
	engineering plastics349	
	References	
5	Benefits of Using PROMISE Technologies	355
	Key business benefits of PROMISE-based products 357	
	Coverage of broad industrial field and	
	whole product life cycle	
	whole product life cycle	