
Where the level of potentially interfering compounds is relatively low and not rapidly changing, the previous system has operated successfully using the sample gas with the H_2S selectively removed as the "zero" reference gas. Potentially interfering compounds are those with conjugated double bonds, such as 1,3-butadiene and aromatics and other sulfur compounds.

Where background absorbance is excessively high and changing rapidly, a special system has been developed for selective H_2S analysis. In this system, H_2S is extracted with a dilute ammonium hydroxide solution, and the strong UV absorption of the ammonium sulfide formed in solution is measured and calibrated for H_2S concentration in the gas stream.

Chromatograph

Process gas chromatographs have been designed for environmental monitoring of H_2S at the ppm level using the sulfurspecific flame photometric detector (FPD) (Figure 1.31g). See Chapter 227 for the basic principles of gas chromatography and a more detailed description of the FPD.

FIG. 1.31h

Top of the pipe tail gas analyzer detects both H_2S and SO_2 . (Courtesy of Ametek Process Instruments.)

FIG. 1.31g The flame photometric detector.

APPLICATIONS

For Claus sulfur recovery applications, a top of the pipe analyzer is available, which can measure both H_2S and SO_2 . An installed unit is shown in Figure 1.31h.

SPECIFICATION FORMS

When specifying hydrogen sulfide analyzers only, one can use the ISA form 20A1001, and when specifying both the analyzer and the composition or properties of the process, which it will be monitoring, use the ISA form 20A1002. Both forms are reproduced with the permission of the International Society of Automation on the next pages.

1	PESDON		- MC		VIAT VCI	E DEVIC	C			6			SDEC	TEICATI		IFICATIONS	
2					L			7		Doc	srec	JFICATI	ON IDEN II	IFICATIONS			
3	Operating Paramete			rs			8			est revision		Date					
4	ISA								9		Issu	e status					
5)		10							
11 12	ADMINISTRATIVE IDENTIFICATIONS Project number Sub project no								SERVICE IDENTIFICATIONS Continued Return conn matl type								
12	Project nu	under	1	Sub pr	oject no		41		Inline						Div/Zon	Group	
14	Enterprise					43	_		Inline area min ign temp Temp ident number								
15	Site							4	_				area cl		Div/Zon	Group	
16	Area Cell Unit						45		Remo	ote a	irea r	nin iş	gn temp		Temp ide	nt number	
17 18		SERVICE ID	ENITIFICATION	JC			46										
19							48						COMPON	ENT DES	IGN CRITE	RIA	
20	Related ec						49	9	Com	oon	ent ty	ype					
21	Service						50		Com								
22 23	D&ID/Ref	erence dwg					51 52			Output signal type Characteristic curve							
23		ne/nozzle no					53		Compensation style								
25		onn pipe spec					54		Type of protection								
26		onn nominal size		Rating			55		Criticality code Max EMI suscentibility Def								
27 28		onn termn type onn schedule no	Wall	Style thickne			56 57			Max EMI susceptibility Ref Max temperature effect Ref							
29		onnection length	waii	unckin			58		Max temperature effect ker								
30	Process lin	ne matl type					59	9	Maxı	Max response time							
31		line number					60			Min required accuracy Ref							
32 33	Fast loop	pipe spec conn nom size		Rating	~		61 62			Avail nom power supply Number v Calibration method							
34		conn termn type		Style			63			Testing/Listing agency							
35		schedule no		thickne	ess		64			Test requirements							
36		estimated lg					65			Supply loss failure mode							
37		material type nn nominal size		Dette			66		Signa	l los	ss fail	ure r	node				
38 39		nn termn type		Rating			68										
69		VARIABLES	MA			COND	ITIO	NS			101		I	PROCES	5 DESIGN C	ONDITIONS	
70	Flow Case	Identification						U	nits		102		Minimum	1	Maximum	Units	
71	Process pr									-11	103						
72 73	Process te Process pl	mperature								-0	104 105						
74		quid actl flow	┣────┼─							-11	105						
75		apor actl flow								-11	107						
76		apor std flow								-0	108					1	
77 78	Process liquid density Process vapor density				_		_				109 110						
79	Process vapor density Process liquid viscosity		l				+			-11	111						
80	Sample re	turn pressure								-11	112						
81		ent/drain press					_			-11	113						
82 83		mperature	┣────┼─		_					-11	114 115						
84	Sample phase type Fast loop lig actl flow								115								
85	Fast loop vapor actl flow										117						
86	_	vapor std flow								-11	118						
87 88	Fast loop vapor density Conductivity/Resistivity		╟───┼				+				119 120					1	
89	pH/ORP		┣───┼				+			-0	120					1	
90	RH/Dewp	oint									122						
91	Turbidity.		┣────┤				+				123						
92 93	Dissolved Corrosivit		┣───┼		-+		+				124 125					1	
94	Particle si		l				+				125						
95											127						
96							_				128						
97 98			┣────┼─		_		+			-11	129 130						
99									130								
100										132							
133						137								RTIES Conti			
134 135	Name Dongity of	roftomp		1.4	+		138 139	<u> </u>	NFPA	he	alth l	nazar	d	Fla	mmability	Reactivity	
135						139 140		+									
Rev	Date	Revision Descr	ription	By	Appv1	Appv2	1	pv3						REMAR	KS		
L																	
							+	_									
11	1	1			1	1	1										

Form: 20A1001 Rev 0

© 2004 ISA

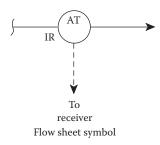
1	RESPO	NSIBLE ORGANIZATION	ANALYSIS DEVICE					6		SPECIFICATION IDENTIFICATIONS		
2				OMPOSIT				7		ment no		
3	ISA		Op	erating Pa	rametei	rs (Contin	ued)	8	Lates	t revision		Date
4 5	-	1						9	Issue	status		
		* DROCTES COMPOSIT		DODEDT	V		-	10		EACLIDEN (ENT	DESIGNICON	NDITIONS
11 12		PROCESS COMPOSIT Component/Property Name	ION OK I	Norma		Units	Mini	mum	Units	EASUREMENT Maximum	Units	Repeatability
13		Component/110perty Ivanie		Norma	u	Ollits	IVIIII	mum	Onits	Waximum	Onits	Repeatability
14											1	
15												
16												
17							_					
18					_							
19 20							_					
20										-		
22												
23										_		
24												
25					_		_					
26 27	+			<u> </u>	+					-	<u> </u>	
27	1			1	+		_					1
29												
30												
31	-						_					
32	+									_		
33 34	+						_					
35							_					
36												
37												
38	-											
39 40	-											
40	1											
42]											
43												
44	-											
45	-											
46 47	-											
48	1											
49]											
50	-											
51 52	-											
52	-											
54	1											
55]											
56	4											
57	-											
58 59	1											
60	1											
61]											
62	4											
63	-											
64 65	1											
66	1											
67]											
68	4											
69	-											
70 71	-											
71 72	1											
73	1											
74]											
75												
Rev	Date	Revision Description	L	By	Appv1	Appv2	Appv3				REMARKS	
┠──┤				$\downarrow \downarrow \downarrow$		\square						
┣───┤				+ + +								
┣──┤				+								
Eorm: 20	A1002 Rev 0)		<u> </u>		<u> </u>	1					© 2004 ISA

Abbreviations

- FPD Flame photometric detector
- LED Light emitting diode
- MOS Metal oxide semiconductor
- UV Ultraviolet

Bibliography

- ACGIH, Documentation of the threshold limit values and biological exposure indices, (2015) https://www.acgih.org/forms/store/ ProductFormPublic/documentation-of-the-threshold-limit-values-and-biological-exposure-indices-7th-ed.
- ASTM D6021 Standard Test Method for Measurement of Total Hydrogen Sulfide in Residual Fuels by Multiple Headspace Extraction and Sulfur Specific Detection, (2012) http://www. astm.org/Standards/D6021.htm.
- ASTM D7621-15 Standard Test Method for Determination of Hydrogen Sulfide in Fuel Oils by Rapid Liquid Phase Extraction, (2015) http://www.astm.org/Standards/D7621.htm.
- ATSDR, Toxicological profile for hydrogen sulfide, (2006) http:// www.atsdr.cdc.gov/toxprofiles/tp.asp?id=389&tid=67.
- Calabrese, E. J. and Kenyon, E., (2011), Air Toxics and Risk Assessment, Lewis Publishers, http://www.belleonline.com/ bios/calabrese.htm.
- CiTicesl, Toxic gas sensor, (1999) http://www.safetygas.com.tw/ pdf/city%20technologies%20toxic%20gas%20sensors.pdf.


- EPA, Acute exposure guideline levels for airborne chemicals, (2015) http://www.epa.gov/oppt/aegl/index.htm.
- FM, Approval standard for toxic gases, (2014) https://www. fmglobal.com/assets/pdf/fmapprovals/6340.pdf.
- InspectAPedia, Toxic gas exposure standards, (2015) http://inspectapedia.com/sickhouse/Gas_Exposure_Limits.php.
- Lewis, R. J., Rapid guide to hazardous chemicals in the workplace, (2000) http://www.amazon.com/Rapid-Guide-Hazardous-Chemicals-Workplace/dp/0471355429.
- Lodge, J., Techniques for measurement of hydrogen sulfide and sulfur oxides, (2013) http://onlinelibrary.wiley.com/doi/10.1029/ GM003p0024/summary.
- McDermott, H. J., Air monitoring for toxic exposures, (2005) http://www.wiley.com/WileyCDA/WileyTitle/productCd-0471454354.html.
- NIOSH, Pocket Guide to Chemical Hazards, National Institute for Occupational Safety and Health, (2015) http://www.cdc.gov/ niosh/npg/.
- OSHA, Toxic Industrial Chemicals (TICs) Guide, (2007) https:// www.osha.gov/SLTC/emergencypreparedness/guides/chemical. html.
- Petex, Hydrogen sulfide in production operations, (1996) http://www. amazon.com/Hydrogen-Sulfide-Production-Operations-Oil/ dp/088698176X.
- PetroWiki, Nanotechnology in hydrogen sulfide detection, (2014) http:// petrowiki.org/Nanotechnology_in_hydrogen_sulfide_detection.
- Scribd, Hydrogen sulfide training manual, (2006) http://www. scribd.com/doc/12756949/H2s-Manual.

1.32 Infrared and Near-Infrared Analyzers

J. E. BROWN (1969) **A. C. GILBY** (1982)

B. G. LIPTÁK and T. M. CARDIS (1995)

E. H. BAUGHMAN (2003) **B. G. LIPTÁK** (2017)

INFRARED ANALYZERS

Process streams	Gas or liquid, surface analysis of solids
Ranges and applications (See Table 1.32a)	 Maximum range is usually 100%, with path length adjustment Ammonia—100 ppm Carbon monoxide—25 ppm Carbon dioxide—20 ppm Ethylene—100 ppm Hexane—100 ppm Methane—10 ppm Moisture (humidity)—50 ppm Nitrous oxide—10 ppm Propane—100 ppm Sulfur dioxide—100 ppm Sulfur dioxide—100 ppm Sulfur dioxide—100 ppm Sulfur dioxide—100 ppm I. Some of these analytes can be measured by UV (Chapter 1.69), for example, sulfur dioxide. 2. The minimum range is also a function of the matrix—the minimum for benzene in air is going to be much lower than that for benzene in gasoline. 3. The normal range is a factor of 10, so ammonia could be 10–100 ppm or 1%–10%, but not 100 ppm to 10%. 4. These are examples only, not an exclusive list.)
Operating pressure	Standard from atmospheric to 150 psig (10 bars); special up to 1000 psig (70 bars)
Operating	-40° C to 50° C (-40° F to 120° F) is standard; probe temperatures can be higher with special
Temperature	Arrangements
Humidity limitations	Up to 95% relative humidity (normally the instrument is purged, which negates the effect of humidity in the atmosphere).
Materials of construction	Cell bodies are available in all standard materials; windows can be made of sodium chloride, calcium fluoride, barium fluoride, sapphire, or zinc selenide
Cell lengths	For liquids, from 0.004 to 4 in. (0.1 to 100 mm); for gases, up to 40 m (130 ft) enclosed and any length for open-path monitoring
Warm-up time	15-20 min. (For most stable operation, allow 16 hr for warm-up.)
Repeatability	±1% of full scale
Linearity	±0.5 of full scale
Inaccuracy	±2% of span
Drift	±1% of full scale for zero and the same for span per day

(Continued)

430 Analytical Measurement

Costs	 Remember that the installation and upkeep costs are normally much larger than just the vendor costs given below. Single-beam portable or laboratory units cost \$4000–\$5000 Industrial nondispersive infrared analyzer with diaphragm capacitor costs \$8,000 Multigas analyzer pulling in up to five gases from 50-m (150-ft) distances costs \$25,000–\$27,000 Microprocessor-based portable spectrometer with preprogrammed multicomponent identification capability for ambient air monitoring and with space for 10 user-defined standards for calibration, AC/DC converter, sample probe, and carrying
	case costs \$20,000 Industrial FTIR costs \$75,000–\$125,000
Partial list of suppliers	ABB Process Analytics—Bomem http://new.abb.com/products/measurement-products/analytical Ametek http://www.ametekpi.com/products/Thermox-WDG-V-Combustion-Analyzer.aspx Aqua Measure http://www.aquameasure.com/methods.htm CAI http://www.gasanalyzers.com/products-ia.php Combustion http://www.cambustion.com/products/ndir500/operating-principle Control Instruments Corp. http://www.controlinstruments.com/technologies/infrared-analyzers
	 Enviro-Analytical http://www.enviro-analytical.com/enviroproducts/ftir_analyzers.html Fuji Electric http://www.fujielectric.com/products/instruments/library/catalog/box/doc/ECNO325c.pdf Horiba Instruments http://www.horiba.com/us/en/automotive-test-systems/products/emission-measurement-systems/ portable-emission-analyzers/details/mexa-584I-826/ Infrared Industries http://www.infraredindustries.com/product/ir-8400d-dual-stream-gas-analyzer/ International Sensor Technology http://www.intlsensor.com/pdf/products.pdf K2BW http://www.k2bw.com/5_c_18.htm
	Midac http://www.midac.com/i-series.html Moisture Register Products, of Aqua Measure Instruments, http://www.aquameasure.com/ NDC http://www.ndc.com/en/Products/At-Line-Near-Infrared-Analyzers/InfraLab-Meat-Analyzer.aspx Servomex http://www.servomex.com/servomex/web/web.nsf/en/servoflex-minimp-5200-multipurpose Shimadzu (A, B) http://www.shimadzu.com/an/spectro/uv/uv1800/uv2.html Siemens http://www.automation.siemens.com/mcms/sensor-systems/en/process-analytics/gas-analyzer-gas-analysis/ extractive/ir-active-components/pages/ultramat-23.aspx Signal Instruments, http://www.k2bw.com/418.htm Teledyne http://www.teledyne-ai.com/products/7500.asp Thermo Scientific http://www.thermoscientific.com/en/search-results.html?keyword=Fourier+Transform+Infrared+Spectro scopy+%28FTIR%29&countryCode=US&matchDim=Y Unity Scientific, http://www.unityscientific.com/products/met-chemistry/sample-preparation Wilks-Spectro Scientific Co. http://www.wilksir.com/products/infraran-specific-vapor-analyzers.html Yokogawa http://www.yokogawa.com/an/ir-gas/an-ir-gas-001en.htm Zeltex Inc. http://www.zeltex.com/portable/101.pdf Most popular: ABB, Servomex, and Siemens
Fiber-optics, sample systems, tools	 Axiom, sample systems, fibers, both NIR and IR http://www.goaxiom.com/process_products_NIR-UV. html#process_nir_multiplexer Dave Mayes, a developer of spectroscopic tools (http://www.dsquared-dev.com) Equitech International Corp., fiber switches, fiber connections to the process, sampling systems http://www.equitechintl.com/Multiplexer.htm Fiber Tech Optica, fiber optics only http://www.fibertech.com/enterprise/fiber-optic-services/ Optec http://www.optek.com/Product_Detail.asp?ProductID=26 Remspec Corp. Fiber Optics http://ir-fiber.com/ Solutions Plus, Inc., makers of traceable standards, a division of Ricca Chemical http://www.riccachemical.com/ NEAR INFRARED ANALYZERS
Process fluids	Gas, liquid, or solid, but mostly liquid and solid
Some applications (See Table 1.32b)	Active ingredient in drugs Benzene in gasoline, 0.2%–1% Boiling points of gasoline, 50°C–200°C (122°F–392°F) Btu of natural gas (high pressure) Caustic in water 0.1%–10% Cetane of diesel fuel

(Continued)

	Molecular weight of small polymers Octanes of gasoline, 80–100
	Octanes of components of gasoline, 60–120 Protein content of wheat p-Xylene concentration in mixture of aromatics
Operating pressure	150 PSI standard (10 bar) 1000 PSI special (70 bar)
Ambient temperature	-40°C to 50°C (-40°F to 120°F) is standard. (Note: Since the ambient temperature changes, it will affect the spectrometer and it will require temperature stabilization.)
Stream temperature	This restricts cell material only; normally one keeps the temperature constant.
Humidity limitations	None—NIRs, like IRs, should be purged; this eliminates the humidity problem.
Materials of construction	Cell bodies in all standard materials; windows can be quartz (most common), sapphire, and others
Cell path lengths	For liquids, 0.04–4 in. (1–100 mm); for gas, long (unless sample is at high pressure so cell length becomes too long to be practical)
Warm-up time	Manufacturers normally quote minutes-recommend overnight for best stability
Repeatability	$\pm 0.01\%$ of full scale
Linearity	$\pm 0.5\%$ of full scale
Inaccuracy	$\pm 1\%$ of span (depends on how well the "modeling" has been done; can be much better)
Drift	$\pm 0.01\%$ of full scale and the same for span per day
Costs	\$80,000–\$180,000, depending on number of streams, distance between the analyzer and sample, and sample preparation required. (How can these costs be justified by the user? At one installation, the analyzer is determining 25 properties every 45 s. It is also possible to look at several streams and still update the control system as often as needed. At another installation, the plant estimated that the analyzer saved \$15 million the first year it was in service.)
Partial list of suppliers	ABB Process Analytics—Bomen http://new.abb.com/products/measurement-products/analytical Bran and Luebbe—Technicon http://www.ebay.com/itm/Bran-Luebbe-IA450-Technicon-TechniServ-NIR-/221349142772 Brimrose Corporation of America http://www.brimrose.com/products/nir_mir_spectrometers/sort_by_spectrometers.html Foss-NIR Systems http://www.foss.dk/
	Guided Wave http://www.guided-wave.com/products/spectrometers.html
	Hamilton Sundstrand (AIT Division—Analect) http://www.spectroscopyonline.com/spectroscopy//product/productDetail. jsp?id=48253
	Jasco Analytical Instruments http://www.jascoinc.com/products/spectroscopy/uv-visible-nir
	LTI http://www.LTIndustries.com Ocean Optics http://www.coleparmer.com/Product/Ocean_Optics_Chem_USB4_Visible_NIR_Spectrophotometer/WU-83500-10
	Rosemount Analytical, Inc.—Emerson http://www2.emersonprocess.com/siteadmincenter/PM%20Rosemount%20
	Analytical%20Documents/PGA_Manual_AOTF-NIR_200010.pdf
	Thermo Electron http://www.thermo.com/eThermo/CMA/PDFs/Various/File_27448.pdf Unity Scientific http://www.unityscientific.com/products/NIR/at-line/smartsampler.asp
	the second

INTRODUCTION

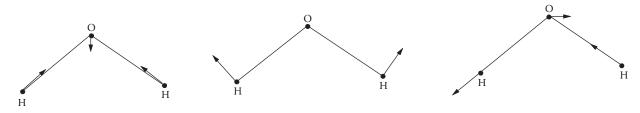
In the first part of this chapter, the infrared (IR) analyzers will be discussed, while the near-infrared (NIR) analyzers will be described in the second part of this chapter. This is not the only chapter where IR and NIR analyzers are discussed. As can be seen from the analyzer selection guide provided in Table 1.1a, IR and NIR analyzers are applicable to a wide range of analytical tasks.

It should also be noted that the boundaries between ultraviolet (UV), visible, NIR, and IR are slowly disappearing. Analyzers are evolving that are capable of operating in all of these spectra, and as the mathematical tools to handle full spectral ranges are becoming available. The addition of microprocessors or tabletop computers has enhanced the performance of these instruments by providing such features as self-calibration, self-diagnostics, and chemometric tools, for example, partial least squares (PLS) and principal

component regression (PCR), to name two, while design modularity has contributed to simplifying maintenance.

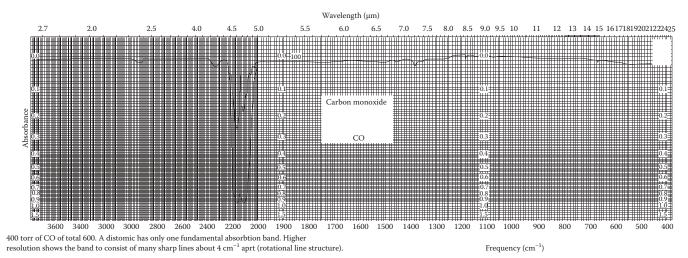
For an overall view of where process analysis is going, the annual conference of the International Forum for Process Analytical Chemistry (IFPAC) can be recommended. It is held annually and normally contains sessions on process IR and NIR; for more information, see http:// www.ifpac.com.

PRINCIPLES OF ANALYSIS

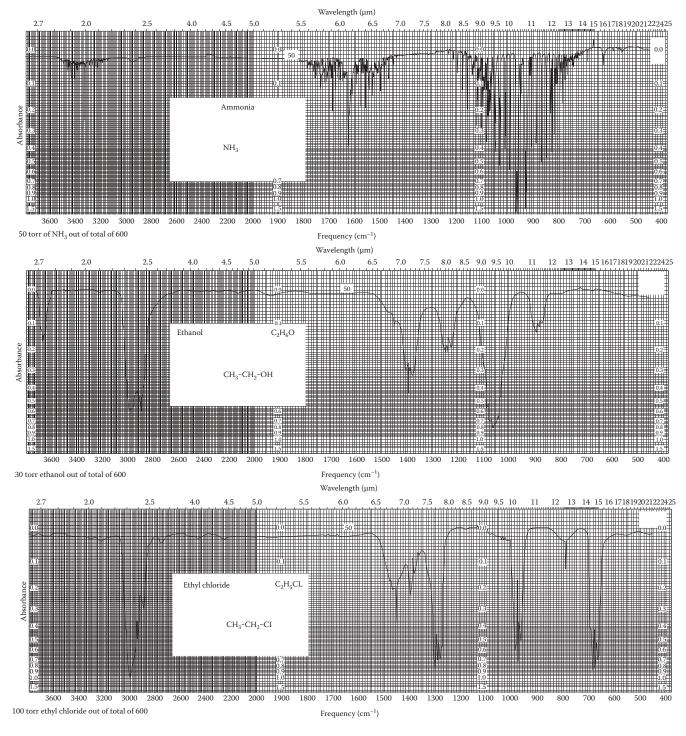

The composition of both gases and liquids can be analyzed by measuring their absorption or reflectance in the infrared (IR) or near-infrared (NIR) spectral regions. These analyzers can operate either in the photometric (absorption) or in the spectrophotometric (dispersion) mode, and some designs are capable to operate in both.

IR absorption (or reflection used with solid samples) is a technique that can be used successfully for continuous chemical analysis. The infrared region of the electromagnetic spectrum is generally considered to cover wavelengths from 0.8 to 20,000 μ m. NIR normally covers 0.8 to 2500 μ m, and classic IR covers the rest. For IR analysis, these limits are normally put in terms of frequency (cm⁻¹, wave numbers or the number of waves per cm): $4000-500 \text{ cm}^{-1}$, which corresponds to wavelengths of 2,500–20,000 µm.

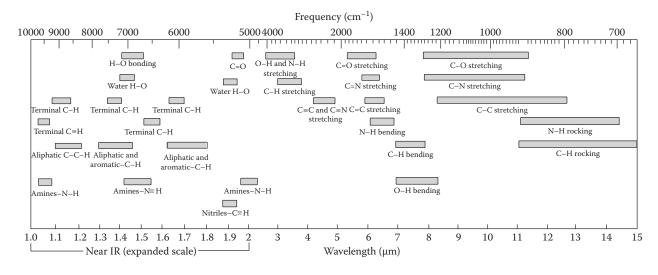
Except for a small overlap region, sources and detectors that are needed in the NIR will not work in the IR, and vice versa. Some laboratory spectrometers have both sources and detectors so they can work in both areas. For the process, most gas analysis is done in the IR and most solid and liquid analysis is done in the NIR. The choice is based on workable path lengths.


Infrared radiation interacts with almost all molecules (except the homonuclear diatomics oxygen (O_2) ; nitrogen (N_2) ; hydrogen (H_2) ; chlorine (Cl_2) ; etc., and monatomics such as helium (He); neon (Ne); etc.) by exciting molecular vibrations and rotations that affect the dipole of the molecule (Figure 1.32a). The oscillating electric field of the IR wave interacts with the electric dipole of the molecule, and when the IR frequency matches the natural frequency of the molecule, some of the IR power is absorbed.

The pattern of wavelengths, or frequencies, absorbed identifies the molecule in the sample. The strength of absorption at particular frequencies is a measure of the concentration of the species. Analytical laboratory IR is largely concerned with identification, or qualitative analysis, while process IR is concerned with quantitative analysis. Some typical spectra are shown in Figure 1.32b. The NIR consists of overtones and combinations of these IR bands.


FIG. 1.32a

The three fundamental vibrations of the water molecule (left to right) are symmetric stretch, bend, and asymmetric stretch. The amplitudes of the vibrations have been exaggerated for clarity.


FIG. 1.32b

Examples of IR spectra recorded using a laboratory double-beam spectrometer. All spectra are gas phase using a 2 in. (5-cm) cell with N_2 added to give a total pressure of 600 mmHg (torr). (Courtesy of Dow Chemical Co.) (Continued)

FIG. 1.32b (Continued)

Examples of IR spectra recorded using a laboratory double-beam spectrometer. All spectra are gas phase using a 2 in. (5-cm) cell with N_2 added to give a total pressure of 600 mmHg (torr). (Courtesy of Dow Chemical Co.)

FIG. 1.32c

Functional group frequency chart. Fundamental vibrations absorb in the mid-IR; overtones and combination bond are 10–10,000 weaker and absorb in the NIR.

Particular groups of atoms tend to absorb at the same frequency with very little influence from the rest of the molecule. These group frequencies are a great help in identifying the molecules from the IR spectra (Figure 1.32c). On the other hand, similar molecules, such as a series of homologous hydrocarbons, have very similar IR spectra.

Infrared analysis is, therefore, most straightforward when the component molecules of the sample have significantly different atomic groupings. A mixture of aliphatic hydrocarbons would be better analyzed by another technique, such as gas chromatography. The part of the spectrum offering the best discrimination between molecules is between 7 and 15 μ m, 1430 and 670 cm⁻¹, the so-called fingerprint region. Given the very large signal-to-noise ratio in the NIR, one can make very fine separations between similar species; for example, o-xylene can be measured in a mixture of xylene, ethylbenzene, and benzene.

Beer–Lambert Law

The starting point for quantitative analysis is the Beer– Lambert law, frequently just called Beer's law, which relates the amount of light absorbed to the sample's concentration and path length.

A = abc =
$$\log_{10} \frac{I_0}{I}$$
 1.32(1)

where

- A is the absorbance
- I is the IR power-reaching detector with sample in the beam path
- I_0 is the IR power-reaching detector with no sample in the beam path
- a is the absorption coefficient of pure component of interest at analytical wavelength; the units depend on those chosen for b and c; a newer term, ε , extinction coefficient, is the preferred term in the academic literature
- b is the sample path length, sometimes l is used
- c is the concentration of sample component

The law states that concentration is directly proportional to absorbance at a given wavelength and path length at specified temperature and pressure. Note that, however, the logarithm